Online ICA: Understanding Global Dynamics of Nonconvex Optimization via Diffusion Processes
نویسندگان
چکیده
Solving statistical learning problems often involves nonconvex optimization. Despite the empirical success of nonconvex statistical optimization methods, their global dynamics, especially convergence to the desirable local minima, remain less well understood in theory. In this paper, we propose a new analytic paradigm based on diffusion processes to characterize the global dynamics of nonconvex statistical optimization. As a concrete example, we study stochastic gradient descent (SGD) for the tensor decomposition formulation of independent component analysis. In particular, we cast different phases of SGD into diffusion processes, i.e., solutions to stochastic differential equations. Initialized from an unstable equilibrium, the global dynamics of SGD transit over three consecutive phases: (i) an unstable Ornstein-Uhlenbeck process slowly departing from the initialization, (ii) the solution to an ordinary differential equation, which quickly evolves towards the desirable local minimum, and (iii) a stable Ornstein-Uhlenbeck process oscillating around the desirable local minimum. Our proof techniques are based upon Stroock and Varadhan’s weak convergence of Markov chains to diffusion processes, which are of independent interest.
منابع مشابه
A Novel Optimization Approach Applied to Multi-Pass Turning Process
Optimization of turning process is a non-linear optimization with constrains and it is difficult for the conventional optimization algorithms to solve this problem. The purpose of present study is to demonstrate the potential of Imperialist Competitive Algorithm (ICA) for optimization of multipass turning process. This algorithm is inspired by competition mechanism among imperialists and coloni...
متن کاملA Novel Optimization Approach Applied to Multi-Pass Turning Process
Optimization of turning process is a non-linear optimization with constrains and it is difficult for the conventional optimization algorithms to solve this problem. The purpose of present study is to demonstrate the potential of Imperialist Competitive Algorithm (ICA) for optimization of multipass turning process. This algorithm is inspired by competition mechanism among imperialists and coloni...
متن کاملAn Improved Imperialist Competitive Algorithm based on a new assimilation strategy
Meta-heuristic algorithms inspired by the natural processes are part of the optimization algorithms that they have been considered in recent years, such as genetic algorithm, particle swarm optimization, ant colony optimization, Firefly algorithm. Recently, a new kind of evolutionary algorithm has been proposed that it is inspired by the human sociopolitical evolution process. This new algorith...
متن کاملQuasi-Newton Methods for Nonconvex Constrained Multiobjective Optimization
Here, a quasi-Newton algorithm for constrained multiobjective optimization is proposed. Under suitable assumptions, global convergence of the algorithm is established.
متن کاملA Nonconvex Optimization Framework for Low Rank Matrix Estimation
We study the estimation of low rank matrices via nonconvex optimization. Compared with convex relaxation, nonconvex optimization exhibits superior empirical performance for large scale instances of low rank matrix estimation. However, the understanding of its theoretical guarantees are limited. In this paper, we define the notion of projected oracle divergence based on which we establish suffic...
متن کامل